top of page

Publications

Full list of publications of LLS

In English

87.- "Frequency-modulated pulsed Bell setup avoids post-selection.”, M.Agüero, A.Hnilo, M. Kovalsky, M. Nonaka. Quantum Inf. Process. 22, 450 (2023), doi: 110.1007/s11128-023-04202-y.

 

86.-“Machine learning algorithms predict experimental output of chaotic lasers”; M.Nonaka, M.Agüero, M.Kovalsky, Optics Letters, 48, pg.1060 (2023). 

85- “Testing randomness of series generated in optical Bell’s experiment”; M.Nonaka, M.Agüero, M.Kovalsky y A.Hnilo, Applied Optics Vol.62 No 12 pg. 3105 (2023). 

84- “Is a spectrograph of hidden variables possible?”, A.Hnilo; arXiv/abs/2303.00003.

83- “Testing a hypothetical transient deviation from Quantum Mechanics: preliminary results”; M.Agüero, A.Hnilo, M.Kovalsky y M. Nonaka; J.Opt.Soc.Am B 40(4) C28-C34 (2023).

82- “Locality, Realism, Ergodicity and Randomness in Bell’s experiment”; A.Hnilo, Entropy 2023, 25(1), 160, doi: 10.3390/e25010160.

81- “Testing randomness of series generated in Bell’s experiment”, M.Nonaka, M.Agüero, M.Kovalsky y A.Hnilo, arXiv/abs/2208.14986.

80- “Proposal to test a transient deviation from Quantum Mechanics’ predictions for Bell’s experiment”, A.Hnilo, M.Agüero y M.Kovalsky, Entropy 2021, 23(12), 1589; doi:10.3390/e23121589.

 

79- “About the description of physical reality of Bell’s experiment”, A.Hnilo, arXiv/abs/2109.03086.

78- “Testing how different levels of entanglement affect predictability in practical setups”, M.Nonaka, M.Kovalsky, M.Agüero y A.Hnilo, Quantum Inf. Process. 20, 165 (2021), doi: 10.1007/s 11128-021-03110-3.

77- “LIGO series, dimension of embedding and Kolmogorov’s complexity”, M.Kovalsky y A.Hnilo, Astronomy & Computing 35, (2021) 100465, también en arxiv.org/abs/2008.04241.

76- “Non-Boolean Hidden Variables model reproduces Quantum Mechanics’ predictions for Bell’s experiment”, A.Hnilo, arXiv/quant-ph/:2005.10367

75- “Quantum Mechanical description of Bell’s experiment assumes Locality”; A.Hnilo,  arXiv.org/abs/2002.12153.

 

74- “Measuring algorithmic complexity in chaotic lasers”, M.Kovalsky, M.Agüero, C.Bonazzola y A.Hnilo,  Int.J.Bif. and Chaos, 30 (4) 2050057, (2020), DOI: 10.1142/S0218127420500571.

73- “Using randomness to decide among Locality, Realism and Ergodicity”, A.Hnilo, arXiv.org/abs/2001.01752.

72- “Simple explanation of the classical limit”, A.Hnilo, Found. Phys. 49(12) p.1365-1371 doi.org/10.1007/s10701-019-00310-x (2019).

71- “Randomness of imperfectly entangled states”; M.Nonaka, M.Agüero, M.Kovalsky y A.Hnilo, arXiv.org/abs/1908.10794 (2019).

70- “Measuring algorithmic complexity in chaotic lasers”; M.Kovalsky, M.Agüero, C.Bonazzola y A.Hnilo, arXiv.org/abs/1902.05790 (2019).

69- “Addendum to: Kolmogorov complexity of sequences of random numbers generated in Bell’s experiments (series of outcomes)”; M.Kovalsky, A.Hnilo y M.Agüero, arxiv.org/1812.05926 (2018).

68- “Kolmogorov complexity of sequences of random numbers generated in Bell’s experiments”; M.Kovalsky, A.Hnilo y M.Agüero, Phys.Rev.A 98, 042131 (2018).

67- “On a different expression of the classical limit of Quantum Mechanics”; A.Hnilo, arXiv.org/abs/1808.04700 (2018).

66- “Kolmogorov complexity of sequences of random numbers generated in Bell’s experiments”; M.Kovalsky, A.Hnilo y M.Agüero, arXiv.org/abs/1805.07161 (2018).

65- “Extreme Events and single-pulse spatial patterns observed in a self pulsing all-solid-state laser”; C.Bonazzola, A.Hnilo, M.Kovalsky y J.Tredicce, Phys. Rev. E 97, 032215 (2018).

 

64-  "A novel time stamping data acquisition system using a digital oscilloscope for single photon counting"; M. Nonaka, M. Agüero, M. Kovalsky y A. Hnilo, XVII Workshop on Information Processing and Control (RPIC) pp. 1-4 IEEE Xplore, doi: 10.23919/RPIC.2017.8214324 (2017).

63- "Searching for chaos in laser time series"; M. Nonaka, M. Agüero, C. Bonazzola, M. Kovalsky y A. Hnilo, XVII Workshop on Information Processing and Control (RPIC),  pp. 1-5, IEEE Xplore, doi: 10.23919/RPIC.2017.8214323 (2017).

62- “Extreme events related with spatial patterns in an all-solid-state laser with saturable absorber”; C.Bonazzola,  A.Hnilo, M.Kovalsky y J.Tredicce, arXiv.org/abs/1706.10293 (2017).

61- “Using measured values in Bell’s inequalities entails at least one hypothesis additional to Local Realism”, A.Hnilo, Entropy 2017,19,80 doi: 103390/e19040180 (2017).

 

60- “Consequences of recent loophole-free experiments on a relaxation of measurement independence”; A.Hnilo, Phys.Rev.A 95, 022102 (2017).

59- “Eberhardt’s inequality and recent loophole-free experiments”; A.Hnilo, arXiv.org/abs/1607.04177 (2016).

58- “Extreme events and crises observed in an all-solid-state laser with modulation of losses”; N. Granese, A.Lacapmesure, M.Agüero, M.Kovalsky, A.Hnilo y J. Tredicce; Opt.Lett. 41 p.3010 (2016).

57- “Features of the extreme events observed in an all-solid-state laser with saturable absorber”; C.Bonazzola, A. Hnilo, M. Kovalsky y J.Tredicce, Phys.Rev.A 92, 053816 (2015).

56- “Simple experiment to test a hypothetical transient deviation from Quantum Mechanics”; A.Hnilo y M.Agüero, arXiv/abs/1507.01766 (2015).

55- “Quantum disentanglement eraser: an optical implementation using three-photon spontaneous decay”; A.Hnilo, arXiv/abs/1506.07001 (2015).

54- “Features of the extreme events observed in the all-solid state laser with a saturable absorber”; C.Bonazzola, A.Hnilo, M.Kovalsky y J.Tredicce; arXiv/abs/1506.02014 (2015).

 

53- “Characteristics of the extreme events observed in the Kerr lens mode locked Ti:Sapphire laser”;
A.Hnilo, M.Kovalsky, M.Agüero y J.Tredicce; Phys.Rev.A 91, 013836 (2015).

52- “Measuring the entanglement of photons produced by a nanosecond pulsed source”; M.Agüero, A.Hnilo y M.Kovalsky; J.Opt.Soc.Am.B 31 p.3088 (2014).

 

51- “On the features of the Optical Rogue Waves observed in the Kerr lens mode locked Ti:Sapphire laser”; A.Hnilo, M.Kovalsky y J.Tredicce, arXiv/abs/1403.5210 (2014).

50- “On the meaning of an additional hypothesis in the Bell’s inequalities”; A.Hnilo, arXiv/quant-ph/1402.6177 (2014).

49- “Optical rogue waves in the solid-state laser with a saturable absorber”; C.Bonazzola, A.Hnilo, M.Kovalsky y J.Tredicce; Proceedings of the “Sixth Rio de la Plata Workshop on laser dynamics and nonlinear photonics”, IEEE Xplore paper 3022515 (2013), d.o.i.: 10.1109/LDNP.2013.6777416.

48- “Measuring entanglement of photons produced by a pulsed source”; M.Agüero, A.Hnilo y M.Kovalsky, arXiv/abs/1312.2515 (2013).

47- “Time weakens the Bell’s inequalities”; A.Hnilo, arXiv/quant-ph/1306.1383v2 (2013).

46- “Optical rogue waves in the all-solid-state laser with a saturable absorber: importance of the spatial effects”; C.Bonazzola, A.Hnilo, M.Kovalsky y J.Tredicce, J.Opt. 15, 064004 (2013), (Special issue on Optical Rogue Waves).

45- “Observable consequences of a hypothetical transient deviation from Quantum Mechanics”; A.Hnilo, arXiv/quant-ph/1212.5722 (2012).

44- “Time resolved measurement of the Bell’s inequalities and the coincidence-loophole”; M.Agüero, A.Hnilo y M.Kovalsky; Phys.Rev.A 86, 052121 (2012).

43-“Extreme Events in Ultrafast Lasers”; Marcelo G. Kovalsky Alejandro A. Hnilo and Jorge R. Tredicce,  JW4A.33.pdf CLEO Technical Digest © OSA 2012. 

42- “Extreme value events in self-pulsing lasers”; A.Hnilo, M.Kovalsky y J.Tredicce; Proceedings of the “Fifth Rio de la Plata Workshop on laser dynamics and nonlinear photonics”, IEEE Xplore paper 2163377 (2011), d.o.i.: 10.1109/LDNP.2011.6162070.

41- “Extreme events in the Ti:Sapphire laser”; M.Kovalsky, A.Hnilo and J.Tredicce; Opt. Lett. 36 p.4449 (2011).

40- “Chaos in the pulse spacing of passive Q-switched all-solid-state lasers”; M.Kovalsky y A.Hnilo; Opt. Lett. 35(20) p. 3498 – 3500, (2010).

39- “Transverse diode pumped Nd:YVO4 laser of simple design”; M.Agüero, A.Hnilo y  M.Kovalsky; Opt. Eng. 49(3) p.034201-5 (2010).

 

38- “Time stamping in EPRB experiments: application on the test of non-ergodic theories”; M.Agüero, A.Hnilo,  M.Kovalsky y  M.Larotonda; Eur.Phys.J. D 55 p.705 (2009). Paper highlighted by the Editor.

37- “Real polarizers and faster than light signaling”; A.Hnilo y M.Kovalsky; Opt. Commun. 281, p. 2834-2837 (2008).

36- “Chaos and bistability in Kerr Lens Mode-locked lasers”; A.Hnilo,  M.Kovalsky y  M.Larotonda, capítulo en el libro “Recent advances in nonlinear laser dynamics: control and synchronization”, Editor A.Pisarchik, Reseach Signpost, ISBN: 978-81-308-0262-6 págs 169-219 (2008).

 

35 - “Bistable behavior of a KLM Ti:Sapphire laser”; A.Hnilo y M.Kovalsky, Int.J. of Bifurcation and chaos, 18(6) p.17-19 (2008).

34- “Low dimension dynamics in the EPRB experiment with random variable analyzers”; A.Hnilo, M.Kovalsky y G.Santiago;  Found.Phys. 37 p.80-102 (2007).

33.- On control of chaos in the Kerr lens mode locked Ti:Sapphire laser M.G. Kovalsky
Optics Communications, 260, p.265, (2006)

32- “On three photon frequency down conversion as an event-ready source of entangled states”; A.Hnilo;  Phys.Rev.A 71, 033820 (2005).

31- “Different routes to chaos in the Ti:Sapphire laser”; M.Kovalsky y A.Hnilo;  Phys.Rev.A 70, 043813 (2004).

30- “Multipulse Nd:YAG Kerr lens mode locked laser”; M.Larotonda, A.Hnilo y F.Diodati; Opt.Commun. Vol.221 p.395-402 (2003).

29- “Local realistic models tested by the EPRB experiment with random variable analyzers”; A.Hnilo, A.Peuriot y G.Santiago; Found.Phys.Lett., Vol.15 p.359-371 (2002).

28- “Experimental investigation on excitability in a laser with saturable absorber”; M.Larotonda, A.Hnilo, J.Méndez y A.Yacomotti; Phys.Rev.A, 65, 033812 (2002).

27- “Teaching the physics of a diode-pumped laser” (artículo de tipo didáctico); F.Diodati, A.Hnilo, M.Kovalsky, M.Marconi, O.Martínez y A.Touron; Opt.&Photonics News Vol.13(1) p.16 (2002).

26- “Description of Kerr lens mode locked lasers with Poincaré maps in the complex plane”; L.Sánchez y A.Hnilo; Opt.Commun., Vol.199 p.189 (2001).

25- “Dynamics of the (diode pumped) Kerr lens mode locked Nd:YAG laser”; A.Hnilo y M.Larotonda; J.Opt.Soc.Am.B, Vol.18 p.1451 (2001).

24- “Bistability in Kerr lens mode locked Ti:Sapphire lasers”; M.Kovalsky, A.Hnilo, A.Libertun y M.Marconi; Opt.Commun. Vol.192 p.333 (2001).

23- “Stability and bifurcations in Kerr lens mode locked Ti:Sapphire lasers”; M.Kovalsky y A.Hnilo;  Opt. Commun. Vol.186 p.155 (2000).

22- “Short laser pulse parameters in a nonlinear medium. Different approximations of the ray pulse matrix”; M.Larotonda, A.Hnilo; Opt.Commun. Vol. 183 p.207 (2000).

21- “Diode pumped self starting Kerr lens mode locking Nd:YAG laser”; M.Larotonda, A.Hnilo, F.Diodati; Opt.Commun. Vol.183 p.485 (2000).

20- "Hidden instabilities in the Ti:Sapphire Kerr lens mode locked laser"; M.Kovalsky, A.Hnilo, M. González Inchauspe; Opt. Lett. Vol.24 p.1638 (1999).

19- "Development of all-solid state laser technology"; M.Azcárate, J.Codnia, F.Diodati, A.Hnilo, M.Larotonda; Proc. of the SPIE, Vol.3572 p.370 (1999).

18- "Optical cavities as iterative maps in the complex plane"; L.Sánchez, A.Hnilo; Opt. Commun. Vol.166 p.229  (1999).

17- "Coupled dye laser modes: experimental study of the dynamics"; D.Fondevila, A.Hnilo, Opt. Commun. Vol.162 p.324 (1999).

16- "Self starting of self mode locking Ti:Sapphire lasers. Descrip­tion with a Poincaré map"; M.Marioni, A.Hnilo, Opt. Commun. Vol.147 p.89 (1998).

15- "Simple source of subnanosecond dye laser pulses"; A.Hnilo, F.Manzano, Optical Eng. Vol.35 p.36 (1996).

14- "Pattern formation in a large Fresnel number dye laser"; S.Chuar­tzman, D.Krygier, A.Hnilo, Opt. Commun. Vol.121 p.1 (1995).

13-"Self mode locking Ti:Sapphire laser description with an itera­tive map"; A.Hnilo; J. Opt. Soc. Am. B Vol.12 p.718 (1995).

12-"On testing Objective Local Theories by using Greenberger-Horne-Zeilinger states"; A.Hnilo; Found. Phys., Vol.24 p.139 (1994). 

11- "On the convenience of using Greenberger-Horne-Zeilinger (GHZ) states for testing Quantum Mechanics (QM) vs. Objective Local Theo­ries (OLT)", A.Hnilo; en "Bell's theorem and the Foundations of Modern Physics"; Proceedings de la conferencia internacional reali­zada en el Palazzo del Ridotto, Cesena, Italia, en Octubre de 1991; pág.285; World Scien­tific Publishing (1993).

10- "Hidden variables with directionalization"; A.Hnilo; Found. Phys. Vol.21 (1991) p.547.

9- "High resolution tuning system for pulsed dye lasers"; A.Hnilo, F.Manzano, O.Martinez; Applied Opt. Vol.30 (1991) p.2481.

8- "Chaotic (as a one-dimensional map) laser cavity: influence of finite response time"; A.Hnilo, M.C. de Sousa Vieira; J. Opt. Soc. Am. B Vol.5 (1988) p.928.

7- "Amplification of ns pulses in dye laser amplifiers"; A.Hnilo, F.Manzano, O.Martínez; J. Opt. Soc. Am.B Vol.4 (1987) p.629.

6- "On the design of pulsed dye laser amplifiers"; A.Hnilo, O.Martí­nez; IEEE J. of Quantum Electron. QE-23 (1987) p.593.

5- "An expression for the small signal gain of pulsed dye laser ampli­fiers"; A.Hnilo, O.Martínez; Opt. Commun. Vol.60 (1986) p.87.

4- "Stored energy in pulsed dye laser amplifiers"; A.Hnilo, O.Martí­nez, E.Quel; IEEE J. of  Quantum Electron. QE-22 (1986) p.20.

3- "Beam expanders for pulsed dye lasers. Comparative study of their performances"; A.Hnilo, F.Manzano; Opt. Commun. Vol.55 (1985) p.197.

2- "Chaotic (as the logistic map) laser cavity"; A.Hnilo; Opt. Commun. Vol.53 (1985) p.194.

 

1- "A reflection beam expander for short cavity dye lasers"; A. Hnilo, F.Manzano, A.Burgos; Opt. Commun. Vol.33 (1980) p.311.

In Spanish

34 - “Desarrollo en LabVIEW y Matlab para el control y automatización de experimentos en óptica cuántica”, M.Nonaka, M.Agüero, A.Hnilo, M.Kovalsky, Anales AFA, Vol.31 (2) (2020).

33 - “Dos hipótesis ocultas en las desigualdades de Bell”; A.Hnilo, Anales AFA Vol.27 n.3 p.109 (2016).

32.- Láser de Nd:Vidrio en forma de lámina
A Tourón, L Fidalgo, D Krygier, M Kovalsky, A Hnilo, P Diodati,  Anales AFA Vol 26 nro 1 ( 2015)

31.- Imágenes 2-D de alta resolución micromaquinadas con láser de nanosegundos
M. Nonaka, M Agüero, D. Krygier, A. Hnilo, M. Kovalsky, A.Touron, L. Fidalgo, P. Diodati, O. Radulovich
Anales AFA Vol 25 nro 2 ,(2014)

30.- Micromaquinado con láseres sólidos de nano y femto segundos: comparación de resultados D. Rava, H. Ferrero, L. Fidalgo , M Agüero, A. Hnilo, M. Kovalsky
Anales AFA Vol 25 nro 2, (2014)

29.- Técnicas para caracterizar efectos térmicos en láseres de estado totalmente sólido con bombeo transversal
M. Agüero, M. Kovalsky, A. Hnilo

Nota Técnica CITEDEF, ISSN 0325-1527 (2014)

 

28- “Pulido mecánico de obleas de silicio”; L.Fidalgo, M.Nonaka, M.Agüero, M.Kovalsky y A.Hnilo; Nota Técnica CITEDEF ISSN 0325-1527 (2014).

27.-Láser de estado sólido de pulsos cortos para telemetría
A.Touron, O. Radulovich, M. Aguero, L. Fidalgo, D. Krygier, M. Kovalsky, A. Hnilo, F. Diodati,  Anales AFA Vol 23 nro 1, (2012)

26- “Fuente cuántica óptica de números aleatorios”; H.Benítez, L.Pérez, C.Schmiegelow, M.Kovalsky, M.Larotonda y A.Hnilo; Anales AFA Vol.20, p.17 (2008). 

25 - “Láser de colorantes pulsado excitado por lámpara flash”; D.Krygier, A.Hnilo y P.Diodati;  capítulo del libro “Láseres, desarrollos y aplicaciones” (Editores: L.Azcárate, P.Diodati, E.Quel, V.Slezak), UNSAM, ISBN 987-23259-0-1, 2007, págs.145-162.

24 - “Kerr lens mode locking en sistemas de ancho de banda angosto”; M.Larotonda y A.Hnilo;  capítulo del libro “Láseres, desarrollos y aplicaciones” (Editores: L.Azcárate, P.Diodati, E.Quel, V.Slezak), UNSAM, ISBN 987-23259-0-1, 2007, págs.59-90.

23 - “Láser de Ti:Zafiro de femtosegundos con mode locking por efecto Kerr”; A.Hnilo y M.Kovalsky;  capítulo del libro “Láseres, desarrollos y aplicaciones” (Editores: L.Azcárate, P.Diodati, E.Quel, V.Slezak), UNSAM, ISBN 987-23259-0-1, 2007, págs.5-34.

22 - “Lámina de Nd:Vidrio irradiada transversalmente por batería de diodos laser”; D.Krygier, M.Agüero, L.Fidalgo, M.Kovalsky, A.Hnilo y F.P.Diodati; Anales AFA Vol.19 págs 55-58  (2007).

21- “Arreglo lineal de fibras para acoplar la emisión de un diodo laser de alta potencia”; D.Krygier, L.Fidalgo, M.Kovalsky, A.Hnilo y F.Diodati; Anales AFA  Vol.16 p.50-54 (2004).

20– “Apuntes para una Mecánica Cuántica local”; A.Hnilo; Anales AFA Vol.14 págs 299-304  (2002).

19 – “Generador óptico de números al azar”; A.Hnilo, A.Peuriot y G.Santiago, informe técnico a requerimiento interno de CITEFA, Agosto 2002.

18 - “Nuevo sistema de enfoque en láseres sólidos”; A.Luna, L.Acuña, M.Larotonda, M.Kovalsky y A.Hnilo; Anales AFA Vol.13 págs 45-47 (2001).

17  – “Estudio sobre los resultados del experimento de Innsbruck”; A.Hnilo, A.Peuriot y G.Santiago; Anales AFA Vol.12 págs 72-76 (2000).

16  – “Forma general del estado que produce las correlaciones de Bell”; A.Hnilo; Anales AFA, Vol.12 págs 69-71 (2000).

15 – “Laser de colorantes de pulsos largos”; D.Krygier, A.Touron, A.Hnilo, F.Diodati; Comu­nicación Científica CITEFA núme­ro: 203 (2000).

14 – “Dispositivo para ajustar longitud de camino óptico”;  D.Krygier, L.Fidalgo, A.Hnilo; Comu­nicación Científica CITEFA núme­ro: 202 (2000).

13  - “Construcción de un laser de colorantes de pulsos largos bombeado por lámpara flash”; D.Krygier, A.Hnilo, F.Diodati; Anales AFA Vol.11 (1999).

12 - "Interacción entre dos modos en un laser de colorantes";  D.Fondevila, A.Hnilo; Anales AFA Vol.9 (1997).

11 - "Análisis de cavidades para laseres sólidos bombeados por diodos"; L.Sánchez, A.Hnilo; Comu­nicación Científica CITEFA núme­ro 192 (1997).

10 - "Mode locking en laser de Nd:YAG bombeado por diodos laser"; M.Larotonda, A.Hnilo; Anales AFA Vol.8 (1996).

9 - "Sistema de transmisión de información confidencial inviola­ble"; A.Hnilo; Memoria Técnica para el Presidente de CITEFA, 35 páginas, Agosto 1996.

8 - "¿Sigue existiendo el mundo mientras dormimos?"; A.Hnilo, Cien­cia e Investigación Vol.47 p.25 (1994).

7 - "Detectabilidad de vórtices ópticos"; L.Sánchez, A.Hnilo, Comu­nicación Científica CITEFA número 182 (1995).

6 - "Laser de Ti:Zafiro pulsado"; A.Peuriot, A.Hnilo, Anales AFA Vol.4 (1992). 

5 - "Rutas al caos en laseres"; A.Hnilo, trabajo de revista para la reunión "Mecánica estadística del desequilibrio y física no lineal" (MEDYFINOL) 1986. 

4 - "Comportamiento dinámico y problema del diseño de etapas ampli­fi­cadoras de laseres de colorantes orgánicos"; A.Hnilo, Tesis de Docto­rado, Depto. de Física, FCE y N, UNBA, 193 páginas, Octubre 1985.

3 - "Rutas al caos en láseres"; A.Hnilo, trabajo de revista para la materia de posgrado "Física no lineal", Depto. de Física, FCE y N, UNBA, 110 páginas, Junio 1984. 

2 - "Comportamiento dinámico de etapas amplificadoras de laseres de colorantes pulsados"; A.Hnilo, O.Martínez, E.Quel; Comunicación Cien­tífica CITEFA n.109 (1982).

1 - "Fluorescencia de Iodo molecular inducida por un laser de colo­ran­tes pulsado"; A.Hnilo, E.Quel; Comunicación Científica CITEFA n.103 (1981).

Detail of publications ( last 5 years)

Testing a hypothetical transient deviation from quantum mechanics: preliminary results

Journal of the Optical Society of America B

       Vol. 40, Issue 4, pp. C28-C34 (2023)

The conflict between quantum mechanics (QM) and the intuitive concepts of locality and realism is most noticeable in the correlation between measurements performed in remote regions of a spatially spread entangled state of photons. It has been hypothesized that a transient deviation (from the value predicted by QM) may occur if the correlation is measured in a time shorter than 𝐿/𝑐, where 𝐿 is the spatial spread of the entangled state, and 𝑐 is the speed of light. This hypothesis solves the conflict by minimally modifying the interpretation of QM, and opens the door to interesting possibilities. Technical reasons make the hypothesis impossible to test directly nowadays, but a stroboscopic observation is attainable. We present preliminary, nonconclusive results of an experiment in progress aimed to perform that test.

Testing randomness of series generated in optical Bell’s experiment.

Applied Optics - accepted, March 23, 2023

The generation of series of random numbers is an important and difficult problem. Appropriate measurements on entangled states have been proposed as the definitive solution to produce series of certified randomness, and quantum optical systems play a major role. However, several reports indicate that random number generators based on quantum measurements have a high rate of series rejected by standard tests of randomness. This is believed to be caused by experimental imperfections, and is usually solved by using classical algorithms to extract randomness. This is acceptable to generate random numbers in a single place. In Quantum Key Distribution (QKD) instead, if the extractor is known by an eavesdropper (a situation that cannot be ruled out) the key’s security may be menaced. We use a not-loophole-free, “toy” all-fiber-optic based setup, mimicking a QKD one operating in the field, to generate binary series and evaluate their level of randomness according to Ville’s principle. The series are tested with a battery of indicators of statistical and algorithmic randomness and nonlinear analysis. The good performance of a simple method to get random series from rejected ones, previously reported by Solis et al., is confirmed and supported with additional arguments. Incidentally, a theoretically predicted relationship between complexity and entropy is verified. Regarding QKD, the level of randomness of series, obtained by applying Toeplitz’s extractor to rejected series, is found indistinguishable from the one of non- rejected raw ones.

Machine learning algorithms predict experimental output of chaotic lasers

We apply an artificial neural network (ANN) of 20 hid- den layers and backpropagation regression to the forecast of experimental time series from a Kerr lens mode locking (KLM) Ti:sapphire laser and a Nd:vanadate with modula- tion losses. In both cases the neural network is able to predict up to 10 steps ahead. In the Ti:sapphire laser the prediction in pulse amplitude is accurate even when the pulse is an extreme event. In the Nd:vanadate laser we forecast both pulse amplitude and pulse-to-pulse time separation. In both cases the prediction goes beyond the Lyapunov prediction horizon.

Proposal to test a transient deviation from quantum mechanics’ predictions for bell’s experiment

Hnilo, A.A.Agüero, M.B.Kovalsky, M.G.

Entropy 2021, 23(12), 1589

Quantum mechanics predicts correlations between measurements performed in distant regions of a spatially spread entangled state to be higher than allowed by intuitive concepts of Locality and Realism. These high correlations forbid the use of nonlinear operators of evolution (which would be desirable for several reasons), for they may allow faster-than-light signaling. As a way out of this situation, it has been hypothesized that the high quantum correlations develop only after a time longer than L/c has elapsed (where L is the spread of the entangled state and c is the velocity of light). In shorter times, correlations compatible with Locality and Realism would be observed instead. A simple hidden variables model following this hypothesis is described. It is based on a modified Wheeler–Feynman theory of radiation. This hypothesis has not been disproved by any of the experiments performed to date. A test achievable with accessible means is proposed and described. It involves a pulsed source of entangled states and stroboscopic record of particle detection during the pulses. Data recorded in similar but incomplete optical experiments are analyzed, and found consistent with the proposed model. However, it is not claimed, in any sense, that the hypothesis has been validated. On the contrary, it is stressed that a complete, specific test is absolutely needed.

Testing how different levels of entanglement affect predictability in practical setups

Nonaka, M.Kovalsky, M.Agüero, M.Hnilo, A.

Quantum Information Processing , 2021, 20(5), 165

The generation of series of random numbers is an important and difficult problem. Appropriate measurements on entangled states have been proposed as the definitive solution. In principle, this solution requires reaching the challenging “loophole-free” condition, which is unattainable in a practical situation nowadays. Yet, it is intuitive that randomness should gradually deteriorate as the setup deviates from that ideal condition. In order to test whether this trend exists or not, we prepare biphotons with three different levels of entanglement: moderately entangled (S=2.67), marginally entangled (S=2.06), and non-entangled (S=1.42) in a setup that mimics a practical situation. The indicators of randomness we use here are: a battery of standard statistical tests, Hurst exponent, an evaluator of Kolmogorov complexity, Takens’ dimension of embedding, and augmented Dickey–Fuller and Kwiatkowski–Phillips–Schmidt–Shin to check stationarity. A nonparametrical statistical ANOVA (Kruskal–Wallis) analysis reveals a strong influence of the level of entanglement with randomness when measured with Kolmogorov complexity in three time series with P-values and strength factor ϵ2: P=0.0015, ϵ2=0.28; P=4.5×10−4, ϵ2=0.67 and P=5.6×10−4, ϵ2=0.16. The setup is pulsed with time stamping, what allows generate different series applying different methods with the same data, even after the experimental run has ended, and to compare their raw randomness. It also allows the stroboscopic reconstruction of time variation of entanglement.

Measuring Algorithmic Complexity in Chaotic Lasers

Kovalsky, M.G.Agüero, M.B.Bonazzola, C.R.Hnilo, A.A.

International Journal of Bifurcation and Chaos, 2020, 30(4), 20500571

Thanks to the simplicity and robustness of its calculation methods, algorithmic (or Kolmogorov) complexity appears as a useful tool to reveal chaotic dynamics when experimental time series are too short and noisy to apply Takens’ reconstruction theorem. We measure the complexity in chaotic regimes, with and without extreme events (sometimes called optical rogue waves), of three different all-solid-state lasers: Kerr lens mode locking femtosecond Ti:Sapphire (“fast” saturable absorber), Nd:YVO4++ Cr:YAG (“slow” saturable absorber) and Nd:YVO4 with modulated losses. We discuss how complexity characterizes the dynamics in an understandable way in all cases, and how it provides a correction factor of predictability given by Lyapunov exponents. This approach may be especially convenient to implement schemes of chaos control in real time.

Development in matlab and labview for the control and automatization of experiments in quantum optics.
Desarrollo en labview y matlab para el control y automatización de experimentos en óptica cuántica.

Nonaka, M.E.Agüero, M.B.Hnilo, A.A.Kovalsky, M.G.

Anales de la Asociacion Fisica Argentina ,2020, 31(2), pp. 62–66

En el presente trabajo, se describe el desarrollo en la plataforma LabVIEW junto con el entorno de programación de MATLAB para el control y automatización de experimentos de óptica cuántica. El programa desarrollado, permite la comunicación con los diferentes dispositivos involucrados: detectores SPCM (Single Photon Counters Modules) de fotones; conversor TDC (time to digital converter) ID900 de ID Quantique con resolución de 10 ps y rotadores motorizados PRM1Z8 (Motorized Rotation Stage de Thorlabs). El sistema implementado, permite trabajar de forma óptima durante los experimentos de laboratorio que deben realizarse en la oscuridad, evitando errores de manipulación durante el proceso de medición.

LIGO series, dimension of embedding and Kolmogorov's complexity

Kovalsky, M.G.Hnilo, A.A.

Astronomy and Computing , 2021, 35, 100465

The interpretation of the series recorded by the Laser Interferometer Gravitational Wave Observatory is a very important issue. Here we apply two methods widely used in the study of nonlinear dynamical systems, namely, the calculation of Takens’ dimension of embedding and the spectrum of Kolmogorov’s complexity, to the series recorded in event GW150914. An increase of the former and a drop of the latter are observed, which are consistent with the appearance of a gravitational wave. We also apply Hurst, ADF and KPSS coefficients. We propose these methods as additional tools to help to interpret LIGO signals.

Beyond loophole-free experiments: A search for nonergodicity

 Hnilo, A.A.

Quantum Worlds: Perspectives on the Ontology of Quantum Mechanics, 2019, pp. 245–266

Simple Explanation of the Classical Limit

 Hnilo, A.A.

Foundations of Physics, 2019, 49(12), pp. 1365–1371

The classical limit is fundamental in quantum mechanics. It means that quantum predictions must converge to classical ones as the macroscopic scale is approached. Yet, how and why quantum phenomena vanish at the macroscopic scale is difficult to explain. In this paper, quantum predictions for Greenberger–Horne–Zeilinger states with an arbitrary number q of qubits are shown to become indistinguishable from the ones of a classical model as q increases, even in the absence of loopholes. Provided that two reasonable assumptions are accepted, this result leads to a simple way to explain the classical limit and the vanishing of observable quantum phenomena at the macroscopic scale.

Kolmogorov complexity of sequences of random numbers generated in Bell's experiments

Quantum states are the ultimate criterion to produce sequences of random numbers. Spatially spread entangled states allow the generation of correlated random sequences in remote locations. The impossibility of observing a quantum state, without disturbing it, ensures that the messages encoded using these sequences cannot be eavesdropped upon. This is the basis of quantum key distribution. It is then of crucial importance knowing whether the sequences generated in the practice by spatially spread entangled states are truly random, or not. Yet, that knowledge is not immediate. One of the obstacles is the very definition of randomness. “Statistical” randomness is related with the frequency of occurrence of strings of data. “Algorithmic” randomness is related with compressibility of the sequence, which is given by Kolmogorov complexity. Sequences generated by entangled pairs of photons are analyzed, focusing on estimations of their complexity. Standard tests of statistical randomness are also applied.

bottom of page